
Department of Computer Science May 2020 New Mexico State University

Ph.D. �alifying Exam: Data Structures and Algorithms
�is is a closed book exam. �e total score is 105 points. Please answer all questions.

1. Given two sorted arrays A and B in non-descending order, your goal is to �nd the median of their
union. We use |A| and |B| to represent the lengths of each array, respectively. When the union contains
an even number of numbers, please �nd the lower median. (DPV Chapter 2)

(a)(20 points) Design an iterative algorithm that runs in Θ(|A|+ |B|). No recursive calls are allowed. You must
provide complete pseudocode with input, output, and steps that may include loops.

Solution:

function median-iterative(A,B)
C = merge(A, B)
p = b(|A|+ |B|+ 1)/2c
return C[p]

function merge(x[1 . . . k], y[1 . . . l])
if k == 0: return y[1 . . . l]
if l == 0: return x[1 . . . k]
allocate an array z of length k + l
m = 1, i = 1, j = 1
while i ≤ k and j ≤ l

if x[i] < y[j]:
z[m] = x[i]
i = i+ 1

else:
z[m] = y[j]
j = j + 1

m = m+ 1
if i ≤ k: z[m...(l + k)] = x[i...k]
if j ≤ l: z[m...(l + k)] = x[j...l]
return z

(b)(15 points) Design a recursive algorithm that runs in O(lg(|A| · |B|)) employing divide-and-conquer.

Solution:

function median-recursive(A,B)
p = b(|A|+ |B|+ 1)/2c
return select(p, A, 1, |A|, B, 1, |B|)

function select(p, A, i1, j1, B, i2, j2)
if p == 1, return min{A[i1], B[i2]}
s1 = i1 + bp/2c − 1
s2 = i2 + bp/2c − 1
if A[s1] < B[s2]
u = select(p− bp/2c, A, s1 + 1, j1, B, i2, s2)

else
u = select(p− bp/2c, A, i1, s1, B, s2 + 1, j2)

return u

2. Let G be a directed graph where edges leaving the source node s all have negative weights. All other
edges in the graph are positively weighted. (DPV Chapter 4)

(a)(20 points) Draw such a graph that Dijkstra’s algorithm correctly �nds all shortest paths from the source
node s. Please label distances from s to each node in the graph.

Solution:

A,∞

C,∞

s, 0 B, -10

D, -9

E, -8
2

4

-10

1
1

1

3

2

(b)(15 points) Does Dijkstra’s algorithm always work generally? If yes, prove your claim; otherwise, give a
counter example and point errors by Dijkstra’s algorithm.

Solution:

If negative cycles are found in a graph, then Dijkstra’s algorithm does not work. Here is a
counter example.

A solution by the Dijkstra’s algorithm:

A,∞

C, -6

s, 0 B, -10

D, -9

E, -8
2

4

-10

1
1

1

3

2

�e correct answer:

A,∞

C, −∞

s, −∞ B, −∞

D, −∞

E, −∞
2

4

-10

1
1

1

3

2

Page 2

If the graph does not contain a negative cycle, Dijkstra’s algorithmworks correctly to identify
shortest paths from source node s.

Proof. Letw be the most negative weight of an edge outgoing from the source node s in graph
G. Add w to all negative edges from s to obtain a new graph G′. A shortest path π from s to
u in G′ must be a shortest path from s to u in G. �is is because lengths of all paths from s
are longer by the same amount of w in G′ than G, if there is no negative cycle in the graph.
If we run Dijkstra’s algorithm on G, all nodes will be processed exactly in the same way as
on G′ because relative positions of nodes in the priority queue are identical during the run.
�us the algorithm works on such a graph as long as it does not have a negative cycle.

3. LetX and Y be two strings. Please give the recurrence equations on �nding the edit distance between
X and Y by dynamic programming. We de�ne the edit distance as the minimal cost of operations
including substitution, insertion, and deletion to transform X to Y . (DPV Chapter 6)

(a)(20 points) If the cost of substitution, insertion, or deletion is all 1, give a recurrence equation for the edit
distance between pre�xes X[1...i] and Y [1...j].

Solution:

d[i, j] = min

d[i− 1, j − 1] X[i] = Y [j]

d[i− 1, j − 1] + 1 X[i] 6= Y [j]

d[i− 1, j] + 1

d[i, j − 1] + 1

(1)

(b)(15 points) To allow a general distance, we de�ne the cost of substitution X[i] by Y [j] by δ(X[i], Y [j]), the
cost of insertion of Y [j] toX by δ(−, Y [j]), and the cost of deletion ofX[i] fromX by δ(X[i],−),
respectively. Please give a recurrence equation for the edit distance between pre�xesX[1...i] and
Y [1...j].

Solution:

d[i, j] = min

d[i− 1, j − 1] + δ(X[i], Y [j])

d[i− 1, j] + δ(X[i],−)

d[i, j − 1] + δ(−, Y [j])

(2)

Page 3

